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2 Laboratoire Européen Associé, Institut Charles Sadron 6 rue Boussingault, 67083 Strasbourg Cedex, France

Received 17 December 2002
Published online 23 May 2003 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2003

Abstract. The Langevin dynamics of a self-interacting chain embedded in a quenched random medium is
investigated by making use of the generating functional method and one-loop (Hartree) approximation.
We have shown how this intrinsic disorder causes different dynamical regimes. Namely, within the Rouse
characteristic time interval the anomalous diffusion shows up. The corresponding subdiffusional dynamical
exponents have been explicitly calculated and thoroughly discussed. For the larger time interval the disorder
drives the center of mass of the chain to a trap or frozen state provided that the Harris parameter,
(∆/bd)N2−νd ≥ 1, where ∆ is a disorder strength, b is a Kuhnian segment length, N is a chain length and
ν is the Flory exponent. We have derived the general equation for the non-ergodicity function f(p) which
characterizes the amplitude of frozen Rouse modes with an index p = 2πj/N . The numerical solution
of this equation has been implemented and shown that the different Rouse modes freeze up at the same
critical disorder strength ∆c ∼ N−γ where the exponent γ ≈ 0.25 and does not depend from the solvent
quality.

PACS. 61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling – 78.55.Qr Amorphous
materials; glasses and other disordered solids – 66.90.+r Other topics in nonelectronic transport properties
of condensed matter

1 Introduction

The statical and dynamical properties of polymer chains
in a random medium bares still many open relevant ques-
tions in the current discussion on polymer physics and
disordered systems [1]. This is due to the fact that this
model naturally occurs under the interpretation of many
experiments: polymer adsorption on heterogeneous sur-
faces [2], polymer diffusion in the swollen polyvinylmethy-
late gels [3], electrophoresis [4], etc.

The theoretical investigation of the problem has been
stimulated by the Monte Carlo simulation on a site-diluted
lattice [5]. These results essentially extended to the dy-
namic properties (anomalous diffusion, chain length, N ,
dependence of the diffusion coefficientD, etc.) in the num-
ber of papers [6–9]. The authors of these papers have
found new dynamic laws where chain diffusion is slower
than even reptation. Such behavior emerges from the pres-
ence of “entropic traps”, i.e. regions which are relatively
free from obstacles and hence entropically more prefer-
able. The diffusion is slowed down substantially by the
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presence of narrow channels between traps, so that the
chain is forced to squeeze through them.

A large number of theoretical studies emphasizing the
statical [10–19] and dynamical [12,20–26] aspects of the
problem. When discussing the static properties one should
discriminate between the annealed and quenched aver-
aging. If the system is large enough and the chain is
still rather mobile, so that it experiences different dis-
order environment (during the time of experiment) the
problem is reduced to the annealed one. In this case the
only effect of disorder (which is characterized by the sec-
ond moment ∆ of the quenched potential fluctuation) is
the reduction of the excluded volume parameter v, i.e.
v → v − ∆ [14,18,19,22]. In the mean time it is well
known [14,18,20,22,23] that the renormalization group
(RG) consideration for the discussed problem suffers from
the lack of a stable fixed point for the renormalized second
moment ∆R, so that the perturbation theory can not be
used. Nevertheless, it was argued [22–24] that for the weak
disorder in the thermodynamical limit the quenched and
annealed averaging lead to the same results. The authors
of reference [16,17] drew similar conclusions by studying
a self-avoiding chain on dilute lattices and making use the
polymer-magnetic analogy and n → 0 trick [27]. On the
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other hand it has been shown in reference [12,13] that
“entropic traps” caused by disorder affect the equilibrium
spatial distribution ZN of the polymer chain strongly for
d < 4. In this case the distribution is inhomogeneous, so
that typical and average values of ZN are different. Under
these conditions the motion of the chain center of mass can
be trapped. The corresponding diffusion coefficient, D, is
scaled with the length of chain N as D ∼ exp(−∆Nα),
where the “specific heat” exponent α = 2−νd and ν is the
Flory exponent. It can be seen that for rather long chains
(remember that α > 0 at d < 4) the diffusion is effectively
suppressed and the whole system becomes nonergodic.

This is an indication of the multiple local minima con-
figurations which could manifest itself through the replica
symmetry breaking (RSB) scheme [28–30]. It have been
shown there that within the RG-approach the conven-
tional replica symmetric (RS) fixed point (which used to
be considered as providing new universal disorder-induced
critical exponents) are unstable with respect to an RSB-
solution. In this case the structure of the renormalized
interactions develops strong RSB and the values of the
corresponding interaction parameters are getting large.

In this paper we use an alternative, dynamical, ap-
proach in order to treat nonergodic regimes for the chain
in a quenched random medium. It is of interest that the
nonergodic, glassy-like regimes have been recently seen in
quasi-elastic neutron scattering experiments on dynamic
properties of flexible polymer chains filled with nano-
particles (hydrophilic aerosil) [31]. The authors of [31]
have seen the enhancement of elastic component of neu-
tron scattering from chains whose dynamics is getting
strongly restricted and slowed down upon the growth of
nano-particles fraction. To the best of our knowledge the
theoretical studies of these regimes is lacking. We will use
the Langevin dynamics and Martin-Siggia-Rose generat-
ing functional method as well as the Hartree approxima-
tion [32] in order to derive the equation of motion for
our random model. We will show that at time t → ∞
this leads to the Götze-like equation [33] for the non-
ergodicity function, f(p), which describes frozen Rouse-
mode p-dependent states. The dynamic phase diagram in
terms of Rouse mode indices and disorder parameter ∆ is
numerically calculated and thoroughly discussed.

2 Preliminaries

2.1 Model

The chain conformation is characterized by the d-
dimensional vector-function R(s, t) of the time t and s
(where 1 ≤ s ≤ N), which labels beads of the chain.
Besides intrachain interactions the chain experiences a
quenched random external field, V {R(s, t)}, so that the
whole Hamiltonian has the form

H =
1
2
ε

N−1∑
s=0

[∇sR(s, t)]2 +Hint {R(s, t)} + V {R(s, t)},
(2.1)

where ε = dkBT/b
2 is the elastic modulus with the Kuhn

segment length b, N is the length of chain and the finite
difference ∇sR(s, t) = R(s+1, t)−R(s, t). The intra-chain
Hamiltonian reads

Hint {R(s, t)} =
1
2

N−1∑
s=0

N−1∑
s′=0

v(R(s, t) − R(s′, t))

+
1
3!

N−1∑
s=0

N−1∑
s′=0

N−1∑
s′′=0

w(R(s, t) − R(s′, t);

R(s′, t) − R(s′′, t)) + . . . , (2.2)

where v(r) and w(r1, r2) are the second and third virial
coefficients correspondingly. The quenched random poten-
tial V {R(s, t)} is assumed to be Gaussian distributed with

〈V (r)V (r′)〉 = ∆δ(d)(r − r′), (2.3)

where the dispersion ∆ is one of the main control parame-
ters of the problem and has dimensions of volume (in these
units of measurement kBT = 1). This will become impor-
tant below. Equations (2.1–2.3) represent and specify our
model.

2.2 Annealed and quenched disorder

Let us consider first the case when the characteristic times
for chain’s configurations and chain’s center of mass po-
sitions in a disordered medium are of the same order of
magnitude. Then in the course of an experiment the chain
experiences all possible quenched field realizations. This
corresponds to the annealed disorder and the correspond-
ing free energy Fanneal = − ln 〈Ξ〉V , where Ξ is the par-
tition function at a given realization of V (r) and 〈. . . 〉V
is the averaging over the field V (r) distribution. It can be
shown that in this case

〈Ξ〉V = Ξ0{v −∆}, (2.4)

where Ξ0{v} is the partition function of the pure (i.e.
without disorder) system with the second virial coeffi-
cient v. As a result the only effect of the disorder is the
reduction of the second virial coefficient, i.e., a reduction
of the excluded volume. However, it may change the sign of
the effective second virial coefficient, and can cause there-
fore collapsed states of the chain.

Nevertheless, in a medium with a strong disorder the
chain is preferably trapped in some regions where the
depth of the quenched random potential exceeds kBT .
In this case the chain is pinned down in some particu-
lar place of a disordered medium and experiences only
a local quenched field. This corresponds to the quenched
disorder and the relevant free energy Fquench = −〈lnΞ〉V .
For the site-diluted lattice medium model it was argued
by Machta [12,13] that while the size of the chain is un-
affected by the disorder (i.e. R ∼ bNν) the whole spatial
distribution of the chain is correlated with the disorder for
d < 4. The effect of the disorder shows up as an essential
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singularity in the N dependence of the so-called typical
value of the partition function, Ξtyp = exp (−Fquench), as
well as in the chain’s center of mass diffusion coefficient D.

The chain with a frozen center of mass explores only a
local region of the medium. As a result a simple estimation
of the typical value of the partition function reads [35]

Ξtyp ≈ Ξ0{v} exp

{(
∆

bd

)1/2

N1−νd/2

}
, (2.5)

where the disorder term comes from the dimensional anal-
ysis of the last term in equation (2.1), which scale like
∆1/2N/Rd/2. The Flory free energy for a Gaussian chain
is then simply given by

Fquench =
R2

Nb2
+
Nb2

R2
−∆1/2 N

Rd/2
· (2.6)

The first two terms corresponds to the stretching and com-
pression entropy of the Gaussian chain. The third term
comes from the quenched disorder. It is interesting for the
discussion below, that the balance of the stretching term
and the disorder term yields a critical value for the disor-
der ∆c ∝ N−2+d/2 under which the Gaussian chain looses
its stability. This corresponds to the Harris criterion (see
below). Chain becomes eventually compact with the local-
ized radius R 
 b(bd/∆)1/(4−d), which can be provided by
comparison of the compression and the disorder terms in
equation (2.6) and agrees with various calculations of the
different type [1,19]. This result for Gaussian chains states
simply that the size of the chain is entirely determined by
the disorder. The chain size does no longer depend on the
chain lengthN , i.e., it is “localized” in a typical volume∆.
In actual fact, it was shown earlier by Cates and Ball [11]
the parameter ∆ modifies to ∆ logµ, where the “mass
term” µ corresponds to the total volume of the system, as
it has been clearly explained by Goldschmidt [36]. This is
an important issue within our discussion, since we show
below that the center of mass becomes localized, i.e., the
chain does not move large distances for a certain disorder
strength. Then the volume which is explored by the chain
is finite and the parameter ∆ logµ is well defined.

The corresponding Flory free energy for excluded vol-
ume chains has the form [35]

Fquench = − lnΞtyp

≈ R2

Nb2
+
Nb2

R2
+ v

N2

Rd
−∆1/2 N

Rd/2
, (2.7)

where the third term corresponds to the excluded volume
interaction. Because for the long chainNα/2 � Nα, where
α = 2− νd, the excluded volume term dominates and the
disorder leaves the Flory exponent unchanged.

What can be expected from dynamic time scales? This
can be estimated by similar arguments. Now we obtain for
our random-field model a straightforward estimation of
the diffusion coefficient D. The characteristic confinement
time for the chain in a trap

t∗ ≈ τR exp

{
N−1∑
s=0

V {R(s, t)}
}
, (2.8)

where τR is the maximal Rouse time. The confinement
time t∗ has a broad distribution according to fluctuations
of barriers between traps. After averaging over these fluc-
tuations we have

〈t∗〉V = τR exp

{
∆

2

N−1∑
s=0

N−1∑
s′=0

δ (R(s, t) − R(s′, t))

}

≈ τR exp
{
∆

bd
N2−νd

}
, (2.9)

where the second line is a direct à la Flory estimation of
the δ-function terms, provided that the size of of the chain
R ∼ bNν .

By taking into account equation (2.9) the estimation
for D reads

D ≈ R2

〈t∗〉V
= DR exp

{
−∆

bd
N2−νd

}
, (2.10)

which goes back to the Machta’s result [12,13]. Since ν =
3/(d+ 2) the “specific-heat” exponent α = 2 − νd = (4 −
d)/(d+2) and it can be seen that at d < 4 and reasonably
large N

∆

bd
N2−νd � 1, (2.11)

so that the chain center of mass is effectively pinned down
or frozen.

The inequality (2.11) can be found independently as a
paraphrase of the well-known Harris criterion [28] which
express conditions when the disorder completely domi-
nates over the chain entropy. We have relegated this con-
sideration based on the n-component field theory formu-
lation [34] to the Appendix A.

As a natural question we may ask for a naive esti-
mate of the individual Rouse modes freezing. Do these
modes freeze individually or all together at once if the
disorder exceeds a certain value? To do so we try a naive
scaling argumentation and rewrite the Hamiltonian in
terms of Rouse modes βH = d

2b2

∑
q q

2|R|2q − √
∆ N

Rd/2

and assume a simple mode decoupling procedure by re-
placing the last term by an appropriate constant, i.e.,√
∆ N

Rd/2 ∼ √
∆N (1−νd/2). Then we assume for a local-

ized chain the scaling R ∼ N0 which leads immediately to〈|Rq|2
〉 ∼ 1

q . Employing the simple Harris type criterion
(when disorder dominates over the entropy) we obtain im-
mediately “localized modes”

q2c < ∆N (2−νd) (2.12)

which suggests a selective mode freezing. We will show
in Section 4.3 and Section 5, that such a selective mode
freezing does not exist when all modes are coupled. At
least under some experimental conditions such a result
will become apparent due to limitations in detecting time
scales.

Moreover, from the dynamical standpoint the center
of mass freezing leads to the ergodicity breaking. It is a
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question of first importance to formulate a more general
dynamical approach which enable to study the slow dy-
namics and ergodicity breaking not only for the center of
mass but also for higher Rouse modes. We will devote the
rest of this paper to the developing of such approach and
show how in the long time limit the ergodicity breaking
for different Rouse modes appears.

3 Equation of motion for the time correlation
function

3.1 Langevin dynamics

In this section we give a general consideration of the
Langevin dynamics of a polymer chain in the quenched
random field. The dynamics of the chain is described by
the following Langevin equation

ζ0
∂

∂t
Rj(s, t) − ε∆sRj(s, t) +

δ

δRj(s, t)
Hint {R(s, t)}

+
δ

δRj(s, t)
V {R(s, t)} = fj(s, t), (3.1)

where j labels Cartesian components, ζ0 is a bare fric-
tion coefficient and the second order finite difference
∆sRj(s, t) = Rj(s+ 1, t) +Rj(s− 1, t) − 2Rj(s, t).

The Langevin problem in question is getting much
more convenient for the theoretical investigation if we
change to the MSR-generating functional representa-
tion [37]. The generating functional (GF) of our problem
can be written as

Z {· · · } =
∫
DRj(s, t)DR̂j(s, t)

× exp
{
Aintra

[
R(s, t), R̂(s, t)

]
+Aext

[
R(s, t), R̂(s, t)

]}
,

(3.2)

where the intra-chain action is given by

Aintra

[
R(s, t), R̂(s, t)

]
=

N−1∑
s=0

∫
dt

{
iR̂j(s, t)

[
ζ0
∂

∂t
Rj(s, t) − ε∆sRj(s, t)

]

+
δ

δRj(s, t)
Hint {Rj(s, t)} + kBTζ0

[
iR̂j(s, t)

]2}
(3.3)

and the action related with the quenched random field
reads

Aext

[
R(s, t), R̂(s, t)

]
=

N−1∑
s=0

∫
dtiR̂j(s, t)

δ

δRj(s, t)
V {R(s, t)}· (3.4)

The expressions (3.2–3.4) correspond to a given realiza-
tion of the random field V {R(s, t)}. Now we perform the

averaging over all configurations of V {R(s, t)} taking into
account its Gaussian statistics (see Eq. (2.3)). The result-
ing GF takes the following form

〈Z {· · · }〉V =∫
DRj(s, t)DR̂j(s, t) exp

{
Aintra

[
R(s, t), R̂(s, t)

]

+∆
N−1∑
s=0

N−1∑
s′=0

∫
dtdt′

∫
ddk

(2π)d
kjkl exp {ik[R(s, t)

− R(s′, t′)]} iR̂j(s, t)iR̂l(s′, t′)

}
· (3.5)

It can be seen from equation (3.5) that the averaging over
the disorder leads to the non-Markovian (i.e. non-local
in time) renormalization of the friction coefficient (which
is coupled with iR̂j(s, t)iR̂l(s′, t′)). This causes actually
dynamical slowing down and ergodicity breaking which
we will discuss below.

3.2 Self-consistent Hartree approximation

In order to handle the functional integral (3.5) we use
the Hartree approximation. In this approximation the full
MSR - action is replaced by the Gaussian one in such a way
that all terms which include more than two fields R(s, t)
and/or R̂(s, t) are written in all possible ways as prod-
ucts of pairs of R(s, t) and/or R̂(s, t) coupled to the self-
consistent averages of the remaining fields. On the other
hand in reference [38] it was shown that the Hartree ap-
proximation is equivalent to taking into account Gaussian
fluctuations around the saddle-point solution. The result-
ing Hartree action is a Gaussian functional with coeffi-
cients which could be represented in terms of correlation
and response functions. The calculation of these coeffi-
cients is straightforward and details can be found in the
Appendix B of reference [39]. The second and third virial
terms in Aintra

[
R(s, t), R̂(s, t)

]
as well as the term which

is responsible for the non-Markovian renormalization of
the friction coefficient are treated in the same manner as
in the reference [40]. After collection of all these terms the
final Hartree GF reads.

〈Z{· · · }〉V =
∫
DRDR̂ exp

{
A

(0)
intra[R, R̂]

+
N−1∑
s=0

N−1∑
s′=0

∫ ∞

−∞
dt
∫ t

−∞
dt′ iR̂j(s, t)Rj(s′, t′)λ(s, s′; t, t′)

−
N−1∑
s=0

N−1∑
s′=0

∫ ∞

−∞
dt
∫ t

−∞
dt′ iR̂j(s, t)Rj(s, t)λ(s, s′; t, t′)

+
1
2

N−1∑
s=0

N−1∑
s′=0

∫ ∞

−∞
dt
∫ ∞

−∞
dt′iR̂j(s, t)iR̂j(s′, t′)χ(s, s′; t, t′)

}
,

(3.6)
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where

λ(s, s′; t, t′) =
∆

d
G(s, s′; t, t′)

∫
ddk

(2π)d
k4F (k; s, s′; t, t′)

+
∫

ddk

(2π)d
k2v(k)Fst(k; s, s′)

+
N∑

s′′=1

∫
ddkddq

(2π)2d
k2w(k,q)Fst(q; s′, s′′)Fst(k; s, s′)

(3.7)

and

χ(s, s′; t, t′) = ∆

∫
ddk

(2π)d
k2Fst(k; s, s′). (3.8)

In equations (3.7–3.8) the response function

G(s, s′; t, t′) =
〈
iR̂(s′, t′)R(s, t)

〉
(3.9)

and the chain density correlator

F (k; s, s′; t, t′) = exp
{
−k

2

d
Q(s, s′; t, t′)

}
(3.10)

with

Q(s, s′; t, t′) ≡ 〈R(s, t)R(s, t)〉−〈R(s, t)R(s′, t′)〉 , (3.11)

whereas Fst(k; s, s′) stands for the static limit of (3.10).
The pointed brackets denote the self-consistent averaging
with the Hartree GF which is given by equation (3.6).

In general one should consider fluctuation dissipation
theorem (FDT) violation which is well known in the con-
text of glass transition phenomenon [41]. In our present
consideration we are mainly interested in the freezing con-
ditions as well as the anomalous diffusion at the relatively
short times. This enables us to assume that the FDT and
the time translational invariance (TTI) are valid, then

G(s, s′; t−t′) = (kBT )−1 ∂

∂t′
Q(s, s′; t−t′) at t > t′. (3.12)

By employing equation (3.12) in equations (3.6–3.8) and
after integration by parts with respect to time argument t′,

we obtain the following Hartree GF:

〈Z{· · · }〉V =

∫
DRDR̂ exp

{
N−1∑

s,s′=0

∫ ∞

−∞
dt
∫ t

−∞
dt′iR̂j(s, t) [ζ0δ(t− t′)

+θ(t− t′)Γ (s, s′; t, t′)]
∂

∂t
Rj(s′, t′)

−
N−1∑

s,s′=0

∫ ∞

−∞
dt
∫ t

−∞
dt′ iR̂j(s, t)Ω(s, s′)Rj(s′, t)

+
N−1∑

s,s′=0

∫ ∞

−∞
dt
∫ ∞

−∞
dt′ iR̂j(s, t) [ζ0δ(t− t′)

+θ(t− t′)Γ (s, s′; t, t′)] iR̂j(s′, t′)

}
, (3.13)

where the memory function

Γ (s, s′; t, t′) = ∆

∫
ddk

(2π)d
k2F (k; s, s′; t, t′) (3.14)

and the effective elastic susceptibility

Ω(s, s′) = εδss′∆s −
∫

ddk

(2π)d
k2 (v(k) −∆)

×
[
Fst(k; s, s′) − δss′

N−1∑
s′′=0

Fst(k; s, s′′)

]

− 1
2

N−1∑
s′′=0

∫
ddkddq

(2π)2d
k2w(k,q)

×
[
Fst(k; s, s′)Fst(q; s′′, s′)

− δss′
N−1∑
s′′′=0

Fst(k; s, s′′′)Fst(q; s′′′, s′′)

]
. (3.15)

In equations (3.13–3.15) we use for simplicity the units
where kBT = 1, so that the disorder parameter ∆ has
the dimensionality of volume. The memory function (3.14)
is responsible for the non-Markovian renormalization of
the Stokes friction coefficient ζ0 which arises from inter-
action with the quenched field V (k). The effective elastic
susceptibility (3.15) takes into account all non-dissipative
(reactive) forces in the system: local spring interaction,
renormalization of the second virial coefficient due to the
random field V (k) as well as third virial term.

3.3 Equation of motion

The equation of motion for the correlation function

C(s, s′; t, t′) = 〈R(s, t)R(s′, t′)〉 (3.16)
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can readily be obtained from GF (3.13). The result at
t > t′ reads

ζ0
∂

∂t
C(s, s′; t, t′) −

N−1∑
m=0

Ω(s,m; t)C(m, s′; t, t′)

+
N−1∑
m=0

∫ t

t′
Γ (s,m; t, τ)

∂

∂τ
C(m, s′; τ, t′)dτ = 0. (3.17)

It is convenient to make the Rouse transformation [42]

C(p, t) =
1
N

N−1∑
s=0

C(s, t) exp(isp) (3.18)

and

C(s, t) =
2π∑

p=0

C(p, t) exp(−isp), (3.19)

where p = 2πj/N (j = 0, 1, . . .N − 1), i.e. we have used
for simplicity the cyclic boundary conditions. After this
transformation the equation (3.17) is simplified and takes
the form

ζ0
∂

∂t
C(p; t) +N

∫ t

0

Γ (p, t− t′)
∂

∂t′
C(p; t′)dt′

+Ω(p, t) C(p; t) = 0 (3.20)

where

NΓ (p, t) = ∆
d

d
2 +2

2d+1πd/2

N−1∑
n=0

cos(ps)

[Q(n, t)]
d
2 +1

(3.21)

and

Ω(p) =

2d
b2

(1 − cos p) − (v −∆)
d

d
2 +2

2d+1(π)
d
2

N−1∑
n=0

1 − cos(pn)

[Qst(n)]
d+2
2

− w
dd+2

4d+1(π)d

N−1∑
n=0

N−n−1∑
m=0

1 − cos(pn)

[Qst(n)]
d+2
2 [Qst(n)]

d
2

·

(3.22)

In equations (3.21) and (3.22) the time dependent mean-
square distance

Q(s, t) =
1
2

〈
[R(s, t) − R(0, 0)]2

〉

=
2π∑

p=0

[Cst(p) − cos(ps)C(p, t)] (3.23)

as well as its static limit

Qst(s) =
2π∑

p=0

[1 − cos(ps)]Cst(p) (3.24)

make the whole equation of motion for C(p, t) self-
consistently closed. In the course of derivation of equa-
tions (3.20–3.22) we have took into account that the
segment-segment interaction is short-ranged, i.e. v(k) ≈ v
and w(k,q) ≈ w; we have used also the Rouse transfor-
mation of the chain density correlator, i.e.

F (k; p; t) =
1
N

N−1∑
n=0

cos(pn) exp
{
−k

2

d
Q(n, t)

}
· (3.25)

The static limit (i.e. t→ 0) is evident from equation (3.20)
provided that the initial condition [37]

ζ0

(
∂

∂t
C(p; t)

)
t→0+

= ζ0G(p, t → 0+) = − d

N
(3.26)

is taken into account. Then the static equation becomes

[NCst(p)]
−1 =

2
b2

(1 − cos p) − (v −∆)
d

d
2 +1

2d+1(π)
d
2

N−1∑
n=0

1 − cos(pn)

[Qst(n)]
d+2
2

− w
dd+1

4d+1(π)d

N−1∑
n=0

N−n−1∑
m=0

1 − cos(pn)

[Qst(n)]
d+2
2 [Qst(n)]

d
2

·

(3.27)

It is of interest that this equation is similar, with an ac-
curacy of prefactors and shifting v → v −∆, to the vari-
ational equation, which we have derived in reference [43].
In the static limit this shifting is an only consequence of
the random field V (r) effect.

4 Dynamic behavior of the chain

We are now in position to launch a more elaborate in-
vestigation of the chain dynamic behavior which is based
on equations (3.20–3.23). There are at least two subjects
which can be studied: i) the anomalous diffusion on the
interval between a microscopic characteristic time τd (see
below) and the longest internal relaxation time τR [1,22];
ii) Rouse modes dynamical freezing at t→ ∞.

4.1 Anomalous diffusion

The presence of the quenched random field restricts the
motion of the chain already at the time interval,

τd < t < τ0N
1+2ν , (4.1)

where τd is a crossover time when the disorder starts to
show up (the value of τd will be discussed below) and
τ0N

1+2ν is the maximal Rouse time [42] with the Flory
exponent ν. This restriction manifest itself through the
subdiffusional regimes (anomalous diffusion) which have
been seen first by Monte Carlo (MC) simulation [8].
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Let us start from the general solution of equa-
tion (3.20). For the Laplace correlator

C(p, z) =
∫ ∞

0

dtC(p, t) exp(−zt) (4.2)

this solution reads [37]

C(p, z) =
Cst

z + Ω(p)
ζ0+NΓ (p,z)

· (4.3)

The calculation of Γ (p, z) is based on equation (3.21),
where the time dependent mean-square distance Q(s, t)
at the time interval (4.1) is approximated by

Q(s, t) = b2
(
t

τ0

)2θ

+Qst(s) (4.4)

where θ = ν/(1 + 2ν) and Qst(s) = b2s2ν . This form can
be justified by implementing simple scaling arguments for
a pure (i.e. without disorder) model [40]. The substitution
of equation (4.4) in equation (3.21) leads to the following
result:

NΓ (p→ 0, t) = A

(
∆

bd+2

)(τ0
t

)β

, (4.5)

where the constant

A =
d

d
2 +2Γ̃

(
1
2ν

)
Γ̃
(

d
2 − 1

2ν + 1
)

2d+2π
d
2 νΓ̃

(
d
2 + 1

) (4.6)

with Γ̃ (x) stands for the gamma function and
the exponent

β = θ

(
d+ 2 − 1

ν

)

= 1 − α

2ν + 1
< 1, (4.7)

where α = 2 − νd is the “specific-heat” exponent.
The Laplace transformation of (4.5) at τ0z � 1 reads

NΓ (p→ 0, z) = A

(
∆

bd+2

)
τβ
0

(
1
z

)1−β

· (4.8)

In the case when the memory term is in excess of the bare
friction coefficient, i.e. at t > τd, we can use equation (4.8)
in equation (4.3) which after inverse Laplace transforma-
tion can be put in the form (see the Ref. [37])

C(p, t) = Cst(p)
∞∑

k=0

[
−
(

bd+2Ω(p)
∆A

)(
t
τ0

)β
]k

Γ̃ (kβ + 1)
· (4.9)

Center of mass mean square displacement

Qc.m.(t) =
1
2

〈
[Rc.m.(t) − Rc.m.(0)]2

〉
= lim

p→0
{Cst(p) − C(p, t)} · (4.10)

The substitution of equation (4.9) in equation (4.10) re-
sults in the leading term of the anomalous diffusion, i.e.

Qc.m.(t) =
D0

N

(
t

τ0

)β

, (4.11)

where

D0 =
bb+2

∆A
· (4.12)

In the course of derivation of equation (4.11) we have used
the static equation (3.27), i.e. Cst(p)Ω(p) = 1/N .

It is easy now to estimate the crossover time τd af-
ter which the disorder starts to effect the diffusion (see
Eq. (4.1)). The condition for that, ζ0 =

∫ τd

0 dtΓ (p→ 0, t)
can be recast in a form

τd =

(
bd+2 ζ0

∆A τβ
0

) 1
1−β

· (4.13)

One can see that the anomalous diffusion exponent β does
not depend from the strength of disorder, whereas the
prefactor D0 decreases with increasing ∆. For a chain in
the good solvent ν = 3/(d + 2) and at d = 3 the ex-
ponent βSAW = 0.9. For a Gaussian chain ν = 1/2 and
βGauss = 0.75, i.e. the subdiffusional exponent has the
same value as in a polymer melt [37]. Finally in the case
of the globule state ν = 1/3 and βGlobule = 0.4, i.e. the
globule anomalous diffusion is suppressed down by the
disorder at most.

4.2 Center of mass freezing

Let us consider now the large time center of mass diffusion.
In this case the characteristic time interval

t� τ0N
1+2ν (4.14)

and internal Rouse modes are already relaxed. For this
time regime the reasonable approximation for Q(n, t) has
the following form (compare with Eq. (4.4)):

Q(s, t) = dDt+Qst(s), (4.15)

where D is the full (not bare) diffusion coefficient, which
is renormalized by the effect of disorder and should be find
self-consistently. On the other hand the equation for the
zero-mode diffusion coefficient has the form [37,39,44]

D =
1

N
[
ζ0 +N

∫∞
0 dtΓ (p = 0, t)

] (4.16)

(we recall that in our units of measurement kBT = 1).
Equation (4.16) enables to find D self-consistently. By
making use equations (3.21) and (4.15) in equation (4.16)
we obtain the following result for the center of mass dif-
fusion coefficient

D = DR (1 −∆FN) , (4.17)
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whereDR = (ζ0N)−1 is the Rouse diffusion coefficient and

FN =
dd/2

2dπd/2
N

N−1∑
s=0

1

[Qst(s)]
d/2

· (4.18)

It can be seen that at ∆FN ≥ 1 the center of mass
diffusion is frozen and the system becomes nonergodic.
The relevance of this result is twofold. First this is a
particular case of the so called A-type dynamical phase
transition which has been extensively discussed [45] in
the context of the mode coupling theory. On the other
hand if we substitute Qst(s) in equation (4.18) with its
most representative term Qst ≈ b2N2ν we will find D ≈
DR

[
1 − const(∆/bd)N2−νd

]
. As a result we turn back to

the Machta’s formula or, more exactly, to its expansion up
to the first order with respect to (∆/b2)N2−νd. This actu-
ally means that equation (4.17) overestimate the freezing
and one should rather treat equation (4.17) as a crossover
criterion for the weak ergodicity breaking transition in the
reference [46] sense.

4.3 Rouse modes freezing and a two mode toy model

Now we study the freezing or the ergodicity breaking of
Rouse modes with p �= 0. This phenomenon mathemati-
cally manifests itself as a bifurcation with respect to the
non-ergodicity function which, in its turn, is a long time
limit of the corresponding correlator [33,45]. Let us de-
fine such persistent part of the normalized correlator (i.e.
non-ergodicity function) as the long time limit

f(p) = lim
t→∞

C(p, t)
Cst(p)

· (4.19)

The equation for f(p) can be easily obtained by taking
the limit t→ ∞ in equation (3.20). The result reads

f(p)
1 − f(p)

= ∆
d

d
2 +1

2d+1π
d
2
NCst(p)

N−1∑
s=0

cos(ps)

[L(s)]
d
2 +1

, (4.20)

where

L(s) =
2π∑

q=2π/N

Cst(q) [1 − cos(qs)f(q)] . (4.21)

Equation (4.20) is a self-consistent equation for the non-
ergodicity function f(p). In the vicinity of the bifurcation
point the non-ergodicity function f(p) is small and we can
expand the r.h.s. of equation (4.20) with respect to f(p).
It is shown in Appendix B that because of orthogonality
the zero-order term of this expansion vanishes and we ar-
rive at the so-called F12-model according Götze’s nomen-
clature [33]. The extensive numerical analysis of the full
equation (4.20) which is given in the next section reveals
that the bifurcation of f(p) is continuous or of A-type.

As a small remark aside we note here that the naive
result of selective mode freezing, equation (2.12), can be
rediscovered within the present more refined calculations.

When mode coupling in equation (4.21) is neglected, the
selective mode freezing can be rederived as mentioned al-
ready in the Section 2 (see also Appendix B).

To gain a better insight into the Rouse modes freez-
ing mechanism let us consider first a simplified version
of equations (B.4). This is a toy model which is based
on the truncation of the full hierarchical equations (B.4)
on the level of two longest modes, j = 1 and j = 2.
In this case the asymptotic form NCst ≈ p−1−2ν where
p ≈ 2πj/N � 1 can be used in order to calculate the
coefficients in equations (B.4). As a result the toy model
equations for f(1) ≡ f and f(2) ≡ g can be recast in the
following form

f

1 − f
= ∆1f + ε1fg

g

1 − g
= ∆2g + ε2f

2, (4.22)

where the coefficients

∆1 = ∆N2−νd ε1 =
∆N2−νd

22ν

∆2 =
∆N2−νd

22+4ν
ε2 = 21+2ν∆N2−νd. (4.23)

It should be mentioned that the important f2-term in the
second equation (4.22) comes from the truncation of the
last sum in r.h.s. of equation (B.4).

It is readily seen that in the vicinity of the critical
point, ∆c

1 = 1, the coefficient ∆1 = 1 + σ, where σ � 1
and mode amplitudes have the following forms: f ≈ σf+
and g ≈ σ2g+, where f+ and g+ are some constants. The
substitution of these forms in equation (4.22) leads to the
solution

f(σ) = σ

g(σ) = σ2 εc2
1 −∆c

2

, (4.24)

where it is important that ∆c
2 < 1.

As a result the trivial solution, f = g = 0, bifurcates
at the critical point ∆1 = 1, so that the f -mode goes
linearly and the g-mode-quadratically with respect to σ.
It is obvious that close to the critical point (i.e. σ �
1) there is no effect of the g-mode on the f -mode. On
the other side g-mode bifurcates only as a result of f -
mode bifurcation. In this respect one can say that the
Rouse mode freezing follows the “host-slave” scenario. In
Section 5 we will show that this scenario holds true for
the whole numerical solution.

5 Numerical analysis

In this section we present the numerical solution of equa-
tions (4.20–4.21) in the full range of the Rouse mode index
j values and for increasing values of the disorder strength
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Fig. 1. Bifurcation diagram for the non-ergodicity function
according to equation (4.20). The calculation refers to a chain
of N = 128 monomers and the bare second virial coefficient
v = 0. We show only the smaller mode index values, i.e. j =
1, .., 5. The freezing of the modes appears above a critical value
of ∆cr ≈ 0.13.

∆ which here acts as a control parameter. As it usually
is in the mode coupling theory [33] the full information
about the static correlator, Cst(p), is a necessary prereq-
uisite for the non-ergodicity equation study. In this re-
spect, considering a chain of given length, we have numeri-
cally solved the static equation (3.27) for Cst(p), where the
virial coefficients and the disorder strength ∆ are given.
By making use of the Fast Fourier Algorithm we have im-
plemented the bisection procedure between two trial pro-
files of Cst(p) until the convergence to the final solution is
achieved. This method has been recently used in the dif-
ferent context [43] where it has enabled to consider chains
of length up to N = 28. After that we use Cst(p) as a
static input for the non-ergodicity equations (4.20–4.21).
This equation is solved for the chain length N = 128 in
much the same way as it is described above for the static
calculation.

5.1 Bifurcation diagram

We have found that for the small values of the disorder
strength ∆ the only solution of equation (4.20) turn out to
be the trivial one, i.e. f(p) = 0. As the disorder strength
increases above a critical value ∆c, we observe that the
first and all other modes become frozen simultaneously,
i.e. they are characterized by a non vanishing value of the
non-ergodicity function f(p) at the same∆c. The resulting
bifurcation phase diagram is shown in Figure 1. As may
be seen from Figure 1 all modes bifurcate continuously
(A-type), but bifurcations of higher modes (j = 2, 3, . . . )
are more smooth compare to the first mode bifurcation.
This is qualitatively consistent with the result of the toy
model analysis from the Section 4.3. Moreover, one can see
that the higher the Rouse mode index the more smooth

Fig. 2. 3D-Bifurcation diagram. The illusory Rouse mode
successive freezing is a result of a finite resolution. In this case
the accuracy of a non-zero value of f(p) or the resolution h =
10−4.

Fig. 3. Radius of gyration as a function of disorder strength ∆
for the chain length N = 128 and v = 0.

is the bifurcation. This creates some numerical difficulties
in precise location of the higher modes critical point ∆c.
As soon as the accuracy of a non-vanishing value of f(p)
(or the resolution) is not high enough the bifurcation di-
agram looks as if there were a subsequent mode freezing
(see Fig. 2). We will show in the Section 5.2 by the care-
ful analysis of the finite resolution problem that this is an
illusory effect and all modes do freeze at the same criti-
cal point. To some extend this corresponds to the mode
decoupling approximation.

The critical value ∆c ≈ 0.13 should be correlated
with the radius-of-gyration diagram in Figure 3. It can
be clearly seen that at disorder strength comparable with
this value the system is approaching the radius of gyra-
tion which corresponds to the globular phase [43]. We re-
call that the static input information which is embraced
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Fig. 4. Comparison of freezing diagram for coil and globule
states. Two curves correspond to two different conditions with
different bare virial coefficients, namely v = 0 (solid line) and
v = 0.5 (dashed line).

by equation (4.20) is determined by the effective virial
coefficient veff = v−∆, where v is a bare second virial co-
efficient. That is why the bifurcation diagram in Figure 1
corresponds to the Rouse mode freezing in the globule
phase.

It is interesting to elucidate how the Rouse modes
freeze in the coil state. For this end we have driven the
system to the coil state by increasing the value of the bare
virial coefficient up to v = 0.5 while the equation (4.20)
is solving. The result of the mode freezing is shown in
Figure 4 and is compared with the previous case (where
v = 0). It can be seen that the freezing of the modes in
the coil state at least for small mode indices (0 < j < 10)
occurs at higher values of ∆. This is intuitively clear
and is consistent with our finding in Section 4.1 that the
anomalous diffusion in the coil state is less affected by
the disorder.

5.2 Finite resolution and chain length study

We have mentioned in the Section 5.1 hat because of very
smooth bifurcation of higher modes it is numerically not
trivial to locate there critical point ∆c. This location be-
comes very sensitive to the accuracy with which we mea-
sure a first non-vanishing value of f(p) while it bifurcates.
We call this resolution h, and Figure 5 shows that as the
chain length N increases and the resolution h is getting
more fine (i.e. h decreases) the measurable critical points
of the different modes merge each other. This proves that
theoretically all modes freeze at the same critical point
∆c. Practically, since any experiment has a finite resolu-
tion one can presumably see that modes freeze sequentially
(see Fig. 2).

Finally, in order to study how the critical disorder pa-
rameter scales with a chain length we have plotted (see
Fig. 6) the value of ∆c for different N . This numerical

Fig. 5. ∆c as a function of chain length N and the resolu-
tion h: a) h = 10−3, b) h = 6.5 × 10−5. Symbols correspond
to the different modes: (+) j = 1; (×) j = 2; (�) j =
3; (�) j = 4

Fig. 6. Finite size analysis shows how the critical ∆c for
the non-zero Rouse modes depends from the chain length N .
Symbols correspond to the different solvent quality: (+) v =
0; (×) v = 0.5. This reveals the scaling law ∆c ∝ N−γ , where
γ ≈ 0.25.
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study, which the Figure 6 depicts, reveals that the scal-
ing law has the form: ∆c = cN−γ , where the prefactor c
increases with the solvent quality but γ ≈ 0.25 and is
universal. This shows that ∆c for non-zero Rouse modes
scales differently than for the zero-mode, which follows
the Harris freezing criterion (see the Sect. 4.2). Such scal-
ing law obviously indicates the importance of the Rouse
modes coupling.

6 Conclusion

We have studied the dynamics of the self-interacting poly-
mer chain (with second and third virial terms) which also
experiences a quenched Gaussian random field. Consider-
ation is based on the MSR-generating functional method
and self-consistent Hartree approximation which allow to
derive the equation of motion for the bead-bead time-
dependent correlation function C(s, s′; t, t′). For the time
interval less then the maximal Rouse time, τR ∼ τ0N

1+2ν ,
we have found an anomalous diffusion regime and have
calculated explicitly the correspondent subdiffusional ex-
ponent. At the larger time interval, t� τR, the ergodicity
of the system is getting broken upon the disorder strength
∆ increases (i.e. the chain becomes frozen). We have de-
rived the corresponding equation for the non-ergodicity
function f(p) and have solved it numerically. This so-
lution shows that with increasing ∆ all modes freeze at
the same critical point, even though the higher modes bi-
furcate much more smooth. The center of mass (or zero-
mode) dynamical freezing is governed by the Harris cri-
terion, (∆/bd)N2−νd ≥ 1, whereas the critical point for
the non-zero modes freezing is scaled as ∆c ∝ N−γ . As it
is found numerically γ ≈ 0.25 and even does not depend
on the solvent quality. This universality is presumably the
result of strong mode coupling effects. On the other hand
it is of interest that the freezing line for coil and globule
states are different with the coil becomes frozen at higher
disorder strength ∆ (see Fig. 4).

It would be interesting to verify our explicit predic-
tions with an appropriate Monte Carlo simulations. As far
as we know most of MC-simulations deals with randomly
distributed obstacles (see e.g. Ref. [1]) rather than with a
Gaussian quenched random field which is a fairly different
model. Our Langevin dynamic calculation is built upon
the Hartree approximation which takes into account only
linear terms with respect to the disorder parameter ∆ (see
e.g. Ref. [32]). As we have discussed it in Section 4.2 this
neglects the activation (or hopping) processes and overes-
timate the freezing transition.

We emphasize that the whole consideration in this pa-
per is based on the validity of FDT and time translational
invariance (TTI). It is sufficient for the discussion of Rouse
modes freezing close to the critical point ∆c. For the in-
vestigation of the gyration radius freezing well below ∆c it
is necessary to discuss R2

g(t) = (1/N)
∑N−1

s=0 < R2(s, t) >
in the aging regime where FDT and TTI do not hold [41].
We will return to this study in following publications.

The authors have benefited from discussions with Matthias
Fuchs, Albert Johner, and Arti Dua. V.G.R. and T.A.V. ac-
knowledge financial support from the Laboratoire Européen
Associé (L.E.A.)

Appendix A: Harris criterion

It was argued presumably for the first time by
Machta [12,13] that even though the disorder has no effect
on the Flory exponent it can influence the whole spatial
distribution of the chain at d < 4. Before him some au-
thors [16,17] believe that disorder is completely irrelevant
for the chain configurations provided that v > ∆. In this
appendix we paraphrase the Harris criterion argumenta-
tion given in reference [28] and apply it to a self-avoiding
chain problem.

Let us start from the field theory representation for a
self-avoiding chain in the presence of a quenched random
field V (r) with the Gaussian distribution and the second
moment given by equation (2.3). We will use the usual
n-component ψ4

a-field theory Hamiltonian [34] which for
our problem has the following form:

H =

∫
ddr

{
b2

2d

n∑
a=1

(∇ψa(r))2+
1
2
τ

n∑
a=1

ψ2
a(r)+

1
4
v

[
n∑

a=1

ψ2
a(r)

]2

− 1
2
V (r)

n∑
a=1

ψ2
a(r)

}
, (A.1)

where ψa(r) (a = 1, 2, . . . n) is a n-component field and τ is
the chemical potential conjugated to N . In this represen-
tation V (r) acts as a random fluctuations of the effective
transition temperature: τ → τ − V (r).

The local minima configurations are given by the
saddle-point equation

−∇2ψa(r) + [τ − V (r)]ψa(r) + vψa(r)
n∑

b=1

ψ2
b (r) = 0.

(A.2)
The Harris criterion should follow from the condition that
in the average the quenched fluctuations of V (r) dominate
over the chain’s entropy. Let us take a region of a linear
size L larger then chain’s size, i.e. L � R. The typical
value of the frozen fluctuations in this region reads

V type ∼ ∆1/2

Ld/2
· (A.3)

Similarly to reference [34] let us assume that the field has
O(n) internal symmetry and can be parameterized as

ψa(r) = naφ(r), (A.4)
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where n is a unit vector in the space of the n-vector
model, i.e.

∑n
a=1 n

2
a = 1. The vector field ψa corre-

sponds to the polymer density in the following way: ρ(r) =
(1/2)

∑n
a=1 ψ

2
a(r) = (1/2)φ2(r). Then the field averaged

over the whole L-region obeys the equation

τ − V type + vφ
2

= 0, (A.5)

where φ
2 ∼ ρ. If the fluctuations V type are strong, i.e.

V type � τ , and by making use of equation (A.3) we get

L� ∆1/d

τ2/d
· (A.6)

On the other hand L � R ∼ bτ−ν , where τ ∼ 1/N (i.e.
R ∼ Nν). Combining this with equation (A.6) yields

∆

bd
N2−νd � 1. (A.7)

The “specific-heat” exponent α = 2−dν = (4−d)/(d+2) is
positive at d < 4 and under condition (A.7) the disorder
substantially affects the chain’s statistics. This recovers
the Harris criterion which we have discussed in Section 2.2.

Appendix B: Connection with F12-model

It is instructive to show how our general equation (4.20)
is related with Götze’s F12-model [33]. This reduction lays
a solid mathematical basis for our analysis.

First of all we will need the following orthogonality
conditions which can be readily obtained by direct calcu-
lations:

N−1∑
s=0

cos(ps) = Nδp0 (B.1)

N−1∑
s=0

cos(ps) cos(qs) =
1
2
Nδpq (B.2)

N−1∑
s=0

cos(ps) cos(qs) cos(κs) =

N

2

{
δκ,p+q + δκ,q−p, if q > p

δκ,p+q + δκ,p−q, if q < p.
(B.3)

Now we can expand r.h.s. of equation (4.20) with respect
to the non-ergodicity function keeping in mind that close
to the bifurcation point f(p) is small. Then performing
this expansion up to the second order and taking into

consideration equations (B.1–B.3) yields

f(p)
1 − f(p)

= ∆
d

d
2 +1(d+ 2)

2d+3π
d
2

N2C2
st(p)[∑2π

q=2π/N Cst(q)
] d

2 +2

×
{
f(p) +

d+ 4

8Cst(p)
[∑2π

q=2π/N Cst(q)
]

×
[

2π∑
q=2π/N

Cst(q)Cst(p+ q)f(q)f(p+ q)

+
2π∑′

q=2π/N

Cst(q)Cst(|p− q|)f(q)f(|p− q|)
]}

, (B.4)

where
∑′2π

q=2π/N means that term p = q is dropped out.
It is of interest that because of equation (B.1) the zero-
order term in this expansion is vanished, so that equa-
tion (B.4) always has the trivial solution f(p) = 0. The
equation (B.1) has the functional structure of F12 model
which has been studied by Götze [33]. It should be also
remarked that under neglecting of the mode coupling
terms (i.e., terms which go beyond the linear approxi-
mation with respect of f(p) in equation (B.4)) the modes
“freeze” selectively as suggested by the naive scaling in
equation (2.12).

References
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